La dispersion chromatique

- C'est bien connu : prisme, "arc-en-ciel"

 cela vient de $n = n(\lambda)$

 En général fonction décroissante de lambda (fonction croissante de ν)

 $$\frac{dn}{d\lambda} < 0$$

- Les peignes de fréquence des Fabry-Perot ou des lames d'indice ne sont pas réguliers !
 Ils se resserrent aux hautes fréquences

- Notion de dispersion
 L'écart entre deux modes est un peu plus petit que ce que donne
 la théorie à indice n constant ($\text{ISL} \approx \frac{\lambda^2}{2n\epsilon}$)

- Notion d'indice de groupe

 $$n_g = n - \lambda \frac{dn}{d\lambda}$$

 $$n_g > n$$

Diffraction

- **Contexte**
 - Des limites à l'approche par rayon (p.ex. : divergence de l'intensité au foyer...!)
 - Meilleures connaissances en électromagnétisme (XVIII, XIX,XXe siècles)
 - La notion "naturelle" de source cohérente continue,
 [par exemple si l'on agrandit les fentes d'Young ...]

- **Effet Talbot** : Cas intermédiaire entre Young et la source continue:
 un réseau en champ "non lointain" :
 (abordé dans l'heure suivante et dans le poly)

- **Origine électromagnétique** :
 voir d'abord
 "Développement en ondes planes du champ",
 au cours d'Optique Physique du 21 NOv, avec F. Marquier
Diffraction : pp. de Huygens-Fresnel

"Développement en ondes planes du champ",

\[\psi(x', y', z) = -\frac{1}{2\pi} \int \int \psi(x', y', 0) \frac{\partial}{\partial z} \left(\frac{e^{ikr}}{r} \right) dx' dy' \]

\[r = \sqrt{(x' - x)^2 + (y' - y)^2 + z^2} \]

⇒ en dérivant dans la limite \(k \approx k \approx 2\pi/\lambda \) & en tronquant au 1er ordre en \(1/r \):

\[\psi(x, y, z) \approx -\frac{i k}{2\pi} \int \int \psi(x', y', 0) \frac{e^{ikr}}{r} dx' dy' = -i \frac{\lambda}{\lambda} \int \int \psi(x', y', 0) \frac{e^{ikr}}{r} dx' dy' \]

Diffraction et D.L. paraxial

\[r = \sqrt{x^2 + y^2 + L^2} = L \left(1 + \frac{x^2}{2L} + \frac{y^2}{2L} \right) \]

\[E(P) = \int \int K E(M) \times \frac{\exp(jkr)}{r} dS(M) \]

\[\exp(+jk PM) \equiv \exp(+jkL) \exp\left(jk \frac{x^2}{2L} \right) \exp\left(jk \frac{y^2}{2L} \right) \]
Diffraction : zone de Fresnel

La variation rapide dans $\exp(\ldots)$ intervient avant celle du dénominateur

$$E(P) \approx \iint_{\text{OUVERTURE}} K \left(\frac{1}{L} \right) \exp(-jKL) \exp\left(\frac{-j}{2L}x^2\right) dx \exp\left(\frac{-j}{2L}y^2\right) dy$$

→ **Notion de Zone de Fresnel**

$$x < \sim \sqrt{\lambda L} \quad \text{t.q.} \quad kx^2 / 2L < \pi$$

$$y < \sim \sqrt{\lambda L} \quad \text{t.q.} \quad ky^2 / 2L < \pi$$

Diffraction : détermination de "K"

- On veut que

$$1 = \iint_{\pm \infty, \pm \infty} K \left(\frac{1}{L} \right) \exp\left(+ j k \frac{x^2}{2L} \right) \exp\left(+ j k \frac{y^2}{2L} \right) dx dy$$

- On sépare x et y

$$\iint_{\pm \infty, \pm \infty} K \left(\frac{1}{L} \right) \exp\left(+ j k \frac{x^2}{2L} \right) \exp\left(+ j k \frac{y^2}{2L} \right) dx dy =$$

$$\frac{K}{L} \int_{\pm \infty} \exp\left(+ j k \frac{x^2}{2L} \right) dx \times \int_{\pm \infty} \exp\left(+ j k \frac{y^2}{2L} \right) dy$$

- Variable sans dimension

$$u^2 = kx^2 / (2L), \quad \exp(+ju^2), \quad du = \sqrt{\frac{k}{2L}} dx$$

- Calcul tabulé (non démontré)

$$\int_{-\infty}^{+\infty} e^{ju^2} = \sqrt{\pi} e^{+j\pi/4} = \sqrt{\frac{\pi}{2}} (1 + j)$$

$$1 = \frac{K}{L} e^{+j\pi/4} \pi \left(\frac{2L}{k} \right)^2 = Ke^{+j\pi/2} \frac{2\pi}{k} \Rightarrow K = 1/j\lambda \quad !$$
du D.L. Paraxial vers une T.F.

Pythagore etc.

\[
M_P = \left(d^2 + (x - x')^2 + (y - y')^2 \right)^{1/2}
\]

\[
M_P \approx d + \frac{x^2}{2d} + \frac{y^2}{2d} + \frac{2xx'}{2d} + \frac{2yy'}{2d} + \frac{x'^2}{2d} + \frac{y'^2}{2d}
\]

 Qui peut sortir de l'intégrale ?

\[
A(P) = -\frac{j}{\lambda d} e^{jkd} e^{jk\frac{x^2+y^2}{2d}} \iint_{\text{TROU}} A(M) e^{jk\frac{xx'+yy'}{2d}} e^{-j\frac{[xx'+yy']}{d}} \, dx \, dy
\]

L'expression en TF et ses variables \(u,v\)

On pose

\[
u = \frac{k \cdot x'}{2\pi d} \quad v = \frac{k \cdot y'}{2\pi d}
\]

\[
A(P) = -\frac{j}{\lambda d} e^{jkd} e^{jk\frac{x^2+y^2}{2d}} \iint_{\text{partout}} \left(A^\text{trans} (M) e^{jk\frac{x'^2+y'^2}{2d}} \right) e^{-j\frac{2\pi (xu+vy)}{d}} \, dx \, dy
\]

• c'est une TF !!!!

\[
A(P) = -\frac{j}{\lambda d} e^{jk\frac{[d+\frac{P^2}{2d}]}{2d}} \times \text{TF} \left(A^\text{trans} (M) e^{jk\frac{[PM^2]}{2d}} \right)
\]

\[
u = \frac{x'}{\lambda d} \quad v = \frac{y'}{\lambda d}
\]
Diffraction de Fresnel : cas simple

- On regarde une dimension ("cas particulier")
 \[A(P) \propto \int_{\text{TROU}} \exp(+jk\frac{(x-x')^2}{2d})dx \]

- Explicitons que le trou va de 0 à L
 \[A(P) \propto \int_{0}^{L} \exp(+jk\frac{(x-x_P)^2}{2d})dx \]

- Chgt de variable
 \[u = \sqrt{k / 2d} (x - x_P) \]
et coeff
 \[s = \sqrt{k / 2d} \]
 (~1/diam zone de Fresnel)

- On nomme la primitive
 \[\text{Cornu}(U) = \int_{0}^{U} e^{+ju^2} \, du \]

- c'est à dire
 \[\int_{0}^{U} \cos(u^2)du + j \times \int_{0}^{U} \sin(u^2)du \]

- l'intégrale à valeur complexe devient
 \[A \propto \int_{s(-x_P)}^{s(L-x_P)} \exp(+ ju^2)du = \text{Cornu}(s(-x_P)) - \text{Cornu}(s(L-x_P)) \]

- où encore
 \[A \propto \int_{s(-x_P)}^{s(L-x_P)} \exp(+ ju^2)du = \int_{s(-x_P)}^{s(L-x_P)} \cos(u^2)du + j \int_{s(-x_P)}^{s(L-x_P)} \sin(u^2)du \]

Spirale de Cornu

\[\int_{0}^{U} \cos(u^2)du + j \times \int_{0}^{U} \sin(u^2)du \]

\[\text{Cornu}(U) = \int_{0}^{U} e^{+ju^2} \, du \]
Utilisation spirale de Cornu

\[
\int_{s(-x_P)}^{s(L-x_P)} \exp(-ju^2) du = \text{Cornu}(s(-x_P)) - \text{Cornu}(s(L-x_P))
\]

Diffraction de Fresnel : Example, Chromatisme

\[
u = \sqrt{\frac{k}{2d}}(x - x_P)
\]

- Franges peu sensibles à la longueur d’onde, en \(\sqrt{\lambda}\)
- restent assez contrastées en lumière blanche pour l’œil (\(\Xi 440 \text{ à } 640 \text{ nm } "utiles"\)
Diffraction à l'infini (diffr. de Fraunhofer)

\[A(P) = -\frac{j}{\lambda d} e^{\frac{jk}{d+\frac{\rho P^2}{2d}}} \times \text{TF} \left(A^{\text{trans}}(M) e^{\frac{jk}{\rho M^2}} \right)_{u=x'/\lambda d, v=y'/\lambda d} \]

- Première intuition : "\(d \) assez grand" pour que :

\[A(P) \sim \text{TF} \left(A^{\text{trans}}(M) \right)_{u=x'/\lambda d, v=y'/\lambda d} \]

On s’intéresse surtout à l’intensité diffractée ~ \(|A(P)|^2 \)

\[\begin{align*}
 u &= x'/\lambda d \\
 v &= y'/\lambda d
\end{align*} \]

données, donc \(x' \) et \(y' \) "tendent vers l'infini" !?

- La bonne question est donc "Quand \(d \) est-il donc assez grand ???"

Conditions d'applicabilité de Fraunhofer

- cf. La question déjà vue du calcul de la d.d.m tout près de l'axe

- Différences négligeables si :

\[a \ll (\text{diam. 1ère zone de Fresnel}) \equiv \sqrt{\lambda d} \]

\(\delta = 0 \)

\[\delta = a^2 / 2d \]

\[\delta = a^2 / d \]

\((a^2 / d << \lambda) \)
Applicabilité Fraunhofer (suite)

Généralisons (idée émergente):

- Condition pour appliquer Fraunhofer:

 \[\text{L'ouverture lumineuse doit être bien à l'intérieur de la première zone de Fresnel de l'observateur} \]

 Pour \(\lambda = 1 \) micron:

 \[
 \begin{align*}
 d=1000 \text{ mm} & \quad a << 1 \text{ mm} \\
 d=100 \text{ mm} & \quad a << 300 \mu \text{m} \\
 d=10 \text{ mm} & \quad a << 100 \mu \text{m} \\
 d=1 \text{ mm} & \quad a << 30 \mu \text{m}
 \end{align*}
 \]

 \(\text{quand } d \to \infty, \text{ la taille } \sqrt{\lambda d} \to \infty, \text{ mais l'angle sous tendu } \frac{\sqrt{\lambda d}}{d} \equiv \frac{\sqrt{\lambda}}{\sqrt{d}} \to 0 \)

 \(\text{R)appel définition de } 1\text{ère, } ... \text{Nième zones de Fresnel (au tableau).} \)

Approche équivalente : \(N_F = \text{nombre de Fresnel} = \frac{a^2}{\lambda d} \)

- Condition pour appliquer Fraunhofer : \(N_F << 1 \)

 cf. "L'ouverture lumineuse bien à l'intérieur de la 1ère Zone de Fresnel"

- Concept utilisé en liaison radio:
 - \(\lambda \) est grand (~1m....)
 - \(\lambda \) Il y a émetteur /obstacle/ récepteur

 \[
 \frac{\sqrt{\lambda d_{\text{émetteur}}}}{d_1} = \frac{\sqrt{\lambda d_{\text{récepteur}}}}{d_2}
 \]
Diffraction de Fraunhofer

3 points de vue essentiellement identiques

\[A(P) = \frac{-j}{\lambda d} e^{\frac{jk}{d+\rho P^2}} \times TF\left(A^{\text{trans}}(M) e^{\frac{jk}{\rho M^2}} \right)_{u=x'/\lambda d, v=y'/\lambda d} \]

- On approxime à 1 le "terme de courbure"
- \(\Leftrightarrow \) Le nombre de Fresnel de l'objet diffractant vu de P est \(\ll 1 \)
- \(\Leftrightarrow \) La zone de Fresnel au niveau de l'écran, vue de P, est \(\gg \) Objet Diffractant

\[A(P) \sim TF\left(A^{\text{trans}}(M) \right)_{u=x'/\lambda d, v=y'/\lambda d} \]

- Rétrospectivement, c'est impropre ou au mieux imprécis de dire :
 "d est assez grand" (le contexte de comparaison ramène \(\sqrt{d} \))
 ou de même "les rayons allant des \{points M\} à P sont quasi parallèles"

Intérêt de la TF : combinaisons

Formules de Translation

1D : \(g(x-x_o) \rightarrow e^{j2\pi x_o u} \tilde{g}(u) \)

2D : \(f(\vec{r}-\vec{r}_o) \rightarrow e^{j2\pi \vec{\omega} \cdot \vec{r}_o} \tilde{f}(u, v) \)

\(\tilde{f}(u, v) \equiv \tilde{f}(\vec{\omega}) \)

Formules de Dilatation

1D : \(g(x/a) \rightarrow a \tilde{g}(au) \)

2D : \(f(\vec{r}/a) \rightarrow a^2 \tilde{f}(au, av) = |a|^2 \tilde{f}(a\vec{\omega}) \)

"moyen → moyen"

petit → grand

grand → petit
Exemples canoniques

\[(\text{sinc} \times \text{sinc})^2\]

Tâche d'Airy
(lien avec fonction de Bessel J1 à faire)

Pour le cas du disque

- Fonction de Bessel dans la tache d'Airy :

\[
\text{TF(Disque}_1(\frac{\rho}{\sqrt{2}}, \frac{\varphi}{\sqrt{2}}))_{u,v} = \frac{2J_1(2\pi u \bar{i} + v \bar{j})}{2\pi |u \bar{i} + v \bar{j}|}
\]

(Disque unité)

- Analogue au sinc, sauf que le premier zéro de J_1 est un peu plus loin que celui de sinus (=π/1), d'un facteur 1,22

\[
\frac{\text{Ce facteur est souvent gardé pour donner une définition de la résolution limite = le rayon de la tache d'Airy (critère de Rayleigh)}}{
\text{[généralisation à conjugaison finie très bientôt]}}
\]

- "Bessel" : intervient dans les intégrales de la famille \((\sin(\sin...) \ldots)\) (ou \(\exp(i*\cos..)\))

Sera retrouvé en modulation de fréquence, etc.

\[
\int_{\text{Disque}} \int_{\rho=0}^{\rho=1} \exp\left[2\pi i (u \bar{i} + v \bar{j})\right] d\rho d\varphi
\]

\[
\int_{\rho=0}^{\rho=1} \int_{\varphi=0}^{\varphi=\theta} \exp(2\pi j u (\rho \cos \varphi)) \exp(2\pi j v (\rho \sin \varphi)) d\rho d\varphi
\]