Properties of optical instruments

Projection optical systems

Instruments : optical systems designed for a specific function

• **Projection systems: real image** (object real or at infinity)

Examples: videoprojector, camera

• Ocular systems: image at infinity (object real or at infinity)

Examples: eyepiece, microscope, astronomical telescope with eyepiece

Characteristics of instruments

	Object at finite distance	Object at infinity
Size of the image	Magnification gy	Focal length
Aperture	Numerical aperture	F-number
	(object or image space)	
	Pupil diameter	
Resolution	Diffraction, Aberrations	similar
	Pixel of detector	
Field of view	Bright field, total field, vignetting (associated with detector)	Similar
Depth of field	Depth of field	Hyperfocal distance
	(associated with pixel size)	(associated with pixel size)

1-Size of Image

Example Webcam: Object and Image at finite distances

Object with size y, Image with size y'

1-Size of Image

Zoom : Object at infinity, Image at finite distance

Object with angular size θ , Image with size y'

 \rightarrow The « magnification » is the focal length of the zoom lens

Lens Aperture

2. Stops and apertures

→ Numerical aperture

 $NA_{obj} = n \sin \alpha$ $NA_{img} = n' \sin \alpha'$

connected to the amount of light entering the system, to the resolution and depth of field

Entrance and exit pupils: an example

Conjugates of the aperture stop:- entrance pupil in object space- exit pupil in the image space

The objective is said to be «open at f/N » or «open at N»

Relationship between NA and f-number?

Abbe sine condition for an object at infinity: $-h\theta = y' \sin \alpha'$

Numerical aperture in image space

$$|\sin(\alpha')| = \frac{\Phi_{PE}}{2f'} = \frac{1}{2N} N$$
: f-number

Reminder about radiometry

Flux entering an instrument:

dФ

$$\Phi_{\text{entering}} = LG = \pi L \Delta S \sin^2 \alpha$$

 $\Phi_{\text{exiting}} = \tau \Phi_{\text{entering}}$ Abbe sine condition \Rightarrow *G*=*G*

For a small surface dS' of the image:

Illumination on the image:

$$E = \frac{d\Phi_{\text{exiting}}}{dS'} = \tau \pi L \sin^2 \alpha' \qquad E =$$

$$\Phi_{\text{exiting}} = L'G' = \pi L'\Delta S' \sin^2 \alpha'$$

objet

PE

 $G = \int \Delta S \cos\theta . 2\pi \sin\theta d\theta = \pi \Delta S \sin^2 \alpha$

 \Rightarrow Luminance is conserved: $L = \tau L$

$$\pi L^{\prime} dS^{\prime} S \ln^{2} \alpha^{\prime} = \pi \tau L dS^{\prime} S \ln^{2} \alpha^{\prime}$$
$$= \tau \pi L s \ln^{2} \alpha^{\prime} \qquad E = \frac{\pi \tau L}{4N^{2}}$$

3. Resolution

→ What is the smallest distance between two object points that we can separate ?

The resolution of a projection system can be limited by :

- diffraction
- detector (emulsion grain, pixel,...)
- geometrical aberrations

a. Diffraction limit: depends on aperture

→ When can we distinguish two images when the object is lit with incoherent light ?

Rayleigh's criterion :

2 Airy spots can be separated if one maximum coincides with the first minimum of the other one

Resolution = radius of the first dark ring = 1,22 λ / 2 NA

b. Detector's resolution

For a projection system (real image)
→ finite size of the detector's pixels

Ex : CCD pixel (~10 μ m), emulsion grain (5-30 μ m)

c. Effect of geometrical aberrations

Aberration will always increase the size of the image compared to the diffraction limit

 \rightarrow example : spherical aberration

4. Field of view

→ Field of view

= Portion of the object seen through the system

For a projection system

The field of view is usually limited by the detector's size

Bright field over the whole detector

 \rightarrow No other vignetting

→ *Requires a large enough diameter for the optics*

Vignetting

If the size of the lens (or another stop) limits the field of view

Vignetting: between bright field and total field of view

Without vignetting

5. Depth of field

Distance along the optical axis where we get a « clear » image

Larger aperture F-number: N = 2.8

How does the depth of field vary?

When taking a picture, the depth of field :

- Increases when you reduce the aperture (increase f-number)
- Increases with distance to object
- Depends on the detector's resolution (or whatever limits the resolution: diffraction, aberrations)

Determination of depth of field

The detector cannot distinguish a point image from an image with the size of one pixel

The detector cannot distinguish a point image from an image with the size of one pixel

The detector cannot distinguish a point image from an image with the size of one pixel

Relationship between depth of field and depth of focus

Edges of depth of field in object space = conjugates to edges of the field in image space

GRADUATE SCHOOL

→ If g' is the resolution in the image space (usually pixel size, but the calculation remains valid for diffraction limit or any other limitation) :

Corresponding resolution in object space : $g = g' / g_v$

Note that the image does not suddenly become blurry on the "edge of the depth of field (\rightarrow rough estimate...)

Example for a photographic objective

Object at 3 m, Aperture N=8, depth of field from 1.7 to 10 m

Hyperfocal distance

= depth of field for an object at infinity

Photographic objective

Object at infinity, Aperture N=3.5, hyperfocal distance 10 m

